Dust coupling parameter of radio-frequency-discharge complex plasma under microgravity conditions
نویسندگان
چکیده
منابع مشابه
Plasma inhomogeneities near the electrodes of a capacitively- coupled radio-frequency discharge containing dust particles
Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitivelycoupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaoti...
متن کاملElectrostatic modes in collisional complex plasmas under microgravity conditions.
A linear dispersion relation in a highly collisional complex plasma, including ion drift, was derived in the light of recent PKE-Nefedov wave experiment performed under microgravity conditions onboard the International Space Station. Two modifications of dust density waves with wave frequencies larger than the dust-neutral collision frequency were obtained. The relevance to the space observatio...
متن کاملNonviscous motion of a slow particle in a dust crystal under microgravity conditions.
Subsonic motion of a large particle moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the particle trajectories shows that the large particle moves almost freely through the bulk of the plasma crystal, while dust particles move along characteristic α-shaped pathwa...
متن کاملBacterial biofilm formation under microgravity conditions.
Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth orbit, biofilm formation was induced by exposing the bacteria to sterile media through a 0.2-microm (pore size) polycarbon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2017
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.96.043204